skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fry, Aubrey_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The field strength (FS) effect of six different network modifiers on the elastoplastic properties of aluminoborosilicate glasses was explored using a volumetric recovery study. This work, in conjunction with Part I, explored the intersection of hardness, crack resistance, and other physical properties with glass elasticity. Results showed that (1) the elastic volume fraction decreased with FS for both the alkali and alkaline earth (AE) glasses; (2) the Poisson's ratio did not trend with pile‐up or shear flow volume fraction; (3) the elastic‐to‐plastic deformation ratio increased with applied load and decreased with modifier FS for both the alkali and AE glasses; and (4) an increase in plasticity correlated with increased hardness, crack resistance, and elastic moduli. 
    more » « less
  2. Abstract The modifier field strength (FS) is believed to play an important role in determining the elastic–plastic responses of aluminoborosilicate (ABS) glasses, but its effect is not well understood. Three novel alkali and three alkaline earth (AE) ABS compositions were created for this study which is the first part of two studies that explored the elastoplastic responses of these glasses. Six compositions were designed using different network modifiers (NWMs) to cover a range of cation FS. The glasses were also designed such that the concentrations of NWM and Al2O3were similar, which maximized the three‐coordinated boron fraction in the network. It is well known that modifier FS can affect the coordination number (CN) of Al and B in an ABS glass structure, for example, a higher FS modifier can promote B3 → B4and higher [Al5,6], but the degree of this depends on network former (NWF) ratios. Previous work used solid‐state NMR spectroscopic analysis on the current glasses to find that there was variation between [B4] and [Al4] between the two glass series (alkali vs. AE) but that was attributed to synthesis factors and no trend with FS was associated with the varying NWF CN. Further,29Si ssNMR showed no evidence of NBOs which made sense based on composition. The conclusion, therefore, was that there was a far greater correlation with modifier FS for the increased mechanical and physical properties rather than the CN of Al and B. Part I of the current work focused on the elastic moduli, Poisson's ratio, the indentation size effect (ISE), and the bow‐in parameter. This part laid out the foundation to investigate the intersection of these elastoplastic properties with hardness and crack resistance as a function of NWM FS. Results showed that: (i) the Young's, bulk, and shear moduli increased with modifier FS, whereas Poisson's ratio did not trend with FS; (ii) the alkali glasses had a significantly higher magnitudes of ISE compared to the AE glasses; and (iii) the bow‐in parameter was load dependent and decreased with modifier FS at the highest indentation load. 
    more » « less
  3. Abstract Although the interactions among glass formers and modifiers, for example, connectivity and charge distribution, have been studied extensively in oxide glasses, the impact of a particular modifier species on the mechanical performance of aluminoborosilicate (ABS) glasses is not well understood. This work compares the indentation properties of six ABS glasses, each of which contains a different network modifier (NWM) with varying field strength (FS). Three alkali and three alkaline earth ABS glasses were designed with low NWM content and [NWM] ≈ [Al2O3], to test the modifier FS effect at low concentrations and to maximize three‐coordinated boron. It has been found that both hardness and crack resistance increase with increasing FS in these ABS systems, which is surprising in the context of historical reports. Using11B,27Al, and29Si solid‐state nuclear magnetic resonance, this work provides evidence of how charge distributions differ as a function of NWM species, and how this relates to the observed indentation behaviors. 
    more » « less
  4. Abstract Glass properties are governed by the interplay between network formers and network modifiers; for a given composition of network formers, the ratio of different cationic modifiers compensating the anionic species in the network has a profound effect, which is often nonlinear, called a mixed modifier effect (MME). We have investigated the MME of sodium (Na) and calcium (Ca) in an aluminosilicate (NCAS) glass series following the formula [Na2O]30−x[CaO]x[Al2O3]10[SiO2]60, wherex = 0, 7.5, 15, 22.5, and 30. A nonadditive trend was observed in hardness and indentation toughness, with aqueous corrosion resistance exhibiting a shift from incongruent to congruent corrosion, whereas the network structure determined by molecular dynamics simulations revealed no significant trend with composition. Additionally, the NCAS glass containing both [Na2O] and [CaO] within an intermediate range exhibited superior resistance to wear at high humidity, a clear MME phenomenon previously only observed in soda–lime silica. 
    more » « less